7^2x=1/49

Simple and best practice solution for 7^2x=1/49 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2x=1/49 equation:



7^2x=1/49
We move all terms to the left:
7^2x-(1/49)=0
We add all the numbers together, and all the variables
7^2x-(+1/49)=0
We get rid of parentheses
7^2x-1/49=0
We multiply all the terms by the denominator
7^2x*49-1=0
Wy multiply elements
343x^2-1=0
a = 343; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·343·(-1)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*343}=\frac{0-14\sqrt{7}}{686} =-\frac{14\sqrt{7}}{686} =-\frac{\sqrt{7}}{49} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*343}=\frac{0+14\sqrt{7}}{686} =\frac{14\sqrt{7}}{686} =\frac{\sqrt{7}}{49} $

See similar equations:

| -1+20r=2r-9(-2r+15) | | 3x+25=3.75x+10 | | 5x=42+87 | | C=6b+8 | | 9q-8=46 | | x+0.66=0.25x-1 | | -5(-8-5t)=5(15+5t) | | 1+9k=5(k–3) | | x-(-9)=33 | | 45=3.14r^2 | | -5x+-10=-20 | | t−5=0 | | 16=16m | | 11x+3=(x+1)+7x | | w−(−19)=14 | | -2(-z-15)=-1+2z | | 3x+25=3.75x+25 | | -16+16b+6=2(8b+16)-13 | | w−(−19)=14. | | 4(w+1)=−6. | | 3-2x+8=24 | | 3/4(x-8=24 | | 12=a-4.2 | | -9m+18=-13m+12m-14 | | -9+3(3m+15)=13m | | 40=9q–14 | | 0.5(6.5+1.1m)=2(1.25+0.3m) | | 9q+18=–81 | | -11c+5=7-11c-2 | | 25x=975 | | 5-15t=5(-3t+1) | | .5=m+2 |

Equations solver categories